Seven Reasons Why MH370 Isn’t in the Southern Indian Ocean

In the wake of last week’s reports by the Australian Transport Safety Board, several mainstream journalists have published articles urging officials to resume searching the seabed in order to find the plane’s wreckage and thereby solve the mystery. The unanimity of the swelling chorus gives the impression that all reasonable people agree.

However, MH370 is a highly technical mystery, and a proper understanding of what may and may not have happened to it is impossible without a grasp of the science behind the evidence in hand. Simply put, the data that we have now gathere collectively weighs heavily against the idea that the plane flew into the southern Indian Ocean. The Australian authorities apparently understand this evidence better than the journalists, which is why they are declining to press forward.

Since I have covered this material in depth elsewhere in this blog, here I will just present a bullet-point list of why MH370 does not now appear to have flown into the southern Indian Ocean.

1– The absence of wreckage in the ATSB search zone. Using Inmarsat data and detailed knowledge of 777 aeronautics and avionics, Australia’s Defense Science and Technology Group were able to generate a robust statistical model of where the plane might have flown, assuming that it turned south after disappearing from Malaysian primary radar. A measure of their confidence in this model is the fact that the Malaysian, Chinese and Australian governments then spent some $150 million searching this vast, deep abyss. Yet no sign of the plane was there. Remarkably, many commentators shrug off this absence of no big deal. It is a big deal. If the plane had turned south, it should have been there. Indeed, in order to come up with a scenario in which the plane turned south but then arrived outside the search area one must presumed a series of bizarre and statistically improbable turns and descents. I liken this to opening a lock without knowing the combination: physically possible, but statistically equivalent to impossible. I wrote more about this topic in the post “Further Clarity on MH370 Flight Modeling.

2– The reboot of the SDU. During the first hour or so of flight MH370, a piece of equipment called the Satellite Data Unit, or SDU, was turned off. Then, at 18:25, it came back on and reconnected with an Inmarsat satellite. It was only because of this re-logon that investigators were able to obtain the seven “pings” that told them everything they know about the last six hours of the flight. As I wrote in my post The SDU Re-logon: A Small Detail That Tells Us So Much About the Fate of MH370, the SDU essentially cannot come back on either accidentally or as a result of some other plausible course of action by the pilot. The fact that it was turned off, then on suggests that whoever took the plane had a sophisticated knowledge of the aircraft’s electrical systems and tampered with the system that generated the signal that ultimately led investigators to assume that the plane went south. Obviously, then, this assumption needs to be interrogated.

3– Final observed turn was to the north. At 18:22, MH370 appeared for the last time as a blip on a military radar screen. Three minutes later, it transmitted a ping that allowed investigators to place it on an arc. By integrating these two pieces of information, it is possible to determine that during that interval MH370 turned to the northwest. I discuss this in more detail here: How MH370 Got Away. The fact that the plane was turning to the north fits better with a northern than a southern route.

4– Debris inconsistencies. On July 31, 2015, the first piece of MH370 debris was discovered on the French island of La Réunion. For many, this erased any doubt that the plane had ended up in the southern Indian Ocean. When French officials examined it, however, they encountered an inexplicable anomaly. The fact that every surface had been populated by barnacles indicated that the piece had drifted somehow wholly submerged. Yet when they tested it in a flotation tank, it floated quite high in the water (as seen above; this image is of an actual 777 flaperon cut to the same size). No one has suggested a natural means by which this could have happened; as I wrote in How the MH370 Flaperon Floated, the obvious explanation is that it spent months artificially tethered under the water. Later, other anomalies emerged. Chemical tests conducted on a barnacle shell from the flaperon found that it grew most of its life in water cooler than that experienced by real objects floating to Réunion. And many of the other pieces that turned up were so devoid of marine biofouling that experts said they couldn’t have been afloat for more than a few weeks.

5– Drift studies inconsistent with any single crash point. As I discussed in “Nowhere to Look for MH370″ and “Update on MH370 Drift Modeling Enigma,” an arm of the Australian government called the CSIRO has done considerable work trying to figure out how debris might have drifted from somewhere in the southern Indian Ocean to the shores of Africa and the islands of the western Indian Ocean. To make a long story short, there is no point from which debris would be expected to arrive at the spots where it was found in the correct time interval.

6– No consistent end-of-flight scenario. Frequency data from the 7th and final Inmarsat ping indicate that MH370 was in a steep an accelerating dive. Yet the only way the plane’s wreckage could have escaped detection until now is if it glided beyond the area already searched by sonar. This inconsistency has long been known, and was reiterated in the most recent CSIRO paper. It was compounded by a report issued by the Malaysian government earlier this year called the “Debris Examination Report,” as I discussed in “Reading the Secrets of MH370’s Debris.” There is also puzzlement over how the flaperon could have become physically separated from the plane.

7– Doubts about the provenance of the debris. As I’ve explained in previous posts, there are some glaring red flags in the way that most of the pieces of MH370 were collected.

These seven reasons are all predicated on evidence that has to do with MH370 itself. There is, however, an eighth reason that has to do with a separate event four and a half months later. On July 17, 2014, a missile launcher from Russia’s 53rd Anti-Aircraft Missile Brigade shot down Malaysia Airlines flight MH17, one of only 14 sister ships to MH370. At first many assumed that the shootdown was an accident perpetrated by confused militiamen, but we now know that the operation was coordinated by the GRU (Russian military intelligence), and was subsequently the subject of an intense disinformation campaign by the GRU. As for the motive, we have no idea. Nor do we have any idea why the Russians would want to hijack MH370. But statistically, 100% of Malaysia Airlines 777-200ERs that come to grief in flight and whose cause is known have fallen victim to Russian military intelligence. If we are to let reason be our guide, that should be the first place to look in trying to solve the MH370 mystery, not the last.