Towfish Scan of MH370 Search Zone Completed (UPDATED)

richard-cole-search-map

Image courtesy of Richard Cole. Click through for full size.

 

Search crews in the remote southern Indian Ocean have completed a task so vast and technically ambitious that it once seemed impossible: to scan a three-mile-deep, 120,000 sq km swathe of seabed using a side-scan sonar “towfish” in hopes of finding the wreckage of missing Malayia Airlines 777 MH370. After considerable delay due to mechanical problems and bad weather, the final square miles were scanned on October 11 by the research vessel Fugro Equator. The $180 million project turned up no trace of the missing plane, though searchers did find several long-sunken sailing ships.

The Fugro Equator will next use an AUV, or autonomous sub, to scan selected areas where the rugged seabed topography was too rough for adequate imaging by the towfish. “The total combined area of the spots that will be surveyed with the AUV is very limited, but still required to ensure that no area has been missed,” says Fugro spokesman Rob Luijneburg.

The Australian National Transport Board (ATSB), which is overseeing the search, expects this fill-in work to be completed by the end of February.

The fact that that the Pennsylvania-sized towfish scan had been completed was first noticed by Richard Cole, a space scientist at University College London who has been meticulously logging the search ships’ movements via online tracking services and then posting charts of their progress on Twitter. “At the completion of Equator’s last swing in mid-October the target of 120,000 square kilometers had been achieved, at least as far as my calculations show,” Cole wrote me last week. Both Fugro and the ATSB subsequently confirmed Cole’s observation.

The 120,000 sq km area has special significance in the effort to find MH370, because ministers from the four countries responsible for the search have made it clear that if nothing turns up within it, the search will be suspended. Unless new evidence emerges, the mystery will be left unsolved.

Plans to search the seabed were first mooted during the summer of 2014, after officials realized that metadata recorded by satellite-communications provider Inmarsat contained clues indicating roughly where the plane had gone. At first, investigators were confident that the wreckage would be found within a 60,000 sq km area stretching along the 7th ping arc from which the plane is known to have sent its final automatic transmission. When nothing was found, ministers from the four governments responsible for the search declared that the search zone would be doubled in size.

In December, 2015, officials declared that the search would be completed by June, 2016. In July of 2016, Malaysia’s transport minister indicated that it would be finished by October; weeks later, a meeting of the four ministers pushed the completion back to December. Last week, the Australian Safety Transport Board announded that “searching the entire 120,000 square kilometre search area will be completed by around January/February 2017.”

In an email to me, ATSB communications officer Dan O’Malley said his organization will issue a report on the seabed search once the full scan is completed. Under ICAO guidelines, Malaysia will only be obligated to release a comprehensive final report on the investigation once it has been formally terminated; so far, Malaysia has only talked of suspending the search, not ending it.

The bulk of the work has been carried out by ships pulling a sidescan sonar device on a long cable. This so-called “towfish” uses reflected sound waves to create an image of the sea floor. By sweeping up and down the search zone in much the same way that a lawnmower goes back and forth across a lawn, searchers have been able to build up a comprehensive image of the search area’s bottom.

But, just as a landscaper might have to use a weedwhacker to clean up areas around rocks or stumps, searchers will have to fill in gaps in the scan where underwater mountains, volanoes and escarpments have prevented the towfish from getting a close enough look.

“A total area for search by the AUV is difficult to give because it concerns a number of relatively small spots that all are relatively difficult to reach and in difficult terrain,” Luijnenburg says.

The fill-in work will be carried out by an Autonomous Underwater Vehicle deployed from the Fugro Equator. The Kongsberg Hugin 100 is capable of diving to depths of up to 15,000 feet and can maintain a speed of 4 knots for up to 24 hours before being retrieved by the mothership. Whereas the side-scan sonar of the towfish has a resolution of 70 cm, the AUV’s sonar has a resolution of  10 cm, and so can image the seabed in much greater detail, as well as taking photographs when necessary.

Meanwhile, as the AUV work progresses, a Chinese vessel will deploy an Remotely Operated Vehicle (ROV) to take photographs of targets previously identified as being of interest. The ATSB has stated that none of these targets are “category one” targets, namely those likely to have come from MH370, however. Says Cole, “In the absence of category one targets there must be a list of targets from the sonar search that look the most interesting, so the question is how far down that list they are going to go.”

While the fill-in work must be carried out in order for the work to be declared 100 percent done, little prospect remains that the missing plane will be found in the southern Indian Ocean.

NOTE: This story was updated 10/26/2016 to include comments from Fugro spokesman Rob Luijnenburg.